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A numerical procedure is described for the evaluation of magnetic coordinates given a 
toroidal. scalar pressure plasma with an arbttrary magnetic field. The accurate representatton 
of magnetic field strength in this way is invaluable for the calculation of drift orbits and 
transport in asymmetric plasmas. 

INTRODUCTION 

Particle transport in thermonuclear plasmas depends basically on the number of 
directions of symmetry in the plasma configuration. The search for toroidal 
confinement devices alternative to the tokamak has led to systems like the stellarator, 
heliac, etc., all with less symmetry and consequently enhanced diffusion, especially at 
low collisionality regimes. Even for the tokamak, asymmetry effects are important for 
it is well known that a tokamak ripple of 1% or less is able to significantly enhance 
the ion loss. Therefore, any numerical technique enabling us to understand asym- 
metric plasmas would be most welcome. Deficiencies in our tools have long been 
recognized. Not only are the equilibrium and stability properties difftcult to simulate, 
but even the single particle confinement characteristics are largely unknown. In these 
asymmetric configurations coordinates based on the magnetic field lines become the 
natural coordinates to use as it is intrinsically capable of higher accuracy and speed. 
In this system, the rapid motion of particles parallel to the field line is well-separated 
from the slow drift motion across the field lines, and hence large errors arising from 
numerical diffusion is avoided. It has been realized both computationally [ 11 and, 
more recently, experimentally [2] that the presence of an electric field is essential to 
good particle confinement in stellarators. Since electric potential is uniform over a 
flux surface, the magnetic coordiantes provide an extremely easy method of incor- 
porating electric field effects. The usefulness of magnetic coordinates has long been 
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recognized in plasma equilibrium and stability studies [3-51. Recently it was shown 
[6-B] that the guiding center drift equations are particularly simple in magnetic coor- 
dinates requiring only a knowledge of the scalar quantity B, the magnetic field 
strength, and its derivatives. From this it follows that particle transport. with and 
without collisions, may be readily computed to a high degree of accuracy with a 
minimum of computer time and storage. 

However, the correspondence between the magnetic coordinates and the Cartesian 
system remains a difficult problem. In this paper we describe the realization of a 
technique [9] whereby the magnetic field strength is computed in magnetic coor- 
dinates by Fourier decomposition for a toroidal plasma with scalar pressure 
equilibrium and closed magnetic surfaces. This procedure assumes a knowledge of the 
magnetic field B(R, Z, 0) at all points in the torus, where R. Z, and @ are the cylin- 
drical coordinates. This field can be derived from a combination of external current 
filaments and plasma currents, assuming that the plasma equilibrium is known. 

THE MAGNETIC COORDINATES AND THEIR DERIVATION 

The appropriate magnetic coordinates for transport studies have a simple covariant 
and contravariant representation for B. In a scalar pressure equilibrium 

these coordinates [6] are w, B,,, x with 

B=VI//XVB, contravariant 

=Vx+Pw covariant. 

(1) 

Here 2741 is the toroidal magnetic flux inside a magnetic surface, x is the generalized 
magnetic potential x = i B . dl, and 8, is an angle which labels the field lines. 

The usefulness of magnetic coordinates (w, 8,, x) can best be illustrated by deriving 
the simple guiding center drift equations in a general field B in these coordinates. The 
guiding center velocity v can be written 18, lo] 

where p,, , the ‘parallel Larmor radius, is 

II 
“I = (eB;mc) - (2) 



EVALUATION OF MAGNETIC COORDINATES 263 

The drift equations are 

dv i!?V 

-=-“ab;;- dt 

dx eB2 
(3) 

where (eB/mc) is the ion cyclotron frequency, {mui =@, V is the electrostatic 
potential, and c is the velocity of light. 

In a torus, poloidal, and toroidal angles, 8 and 4, respectively, can be defined such 
that ]7] 

(4) 

(5) 

where (c/2) g(v) is the total poloidal current outside a flux surface v, (e/2) I(v), the 
total toroidal current inside a flux surface v, and I(W), the rotational transform. 

The periodicities in 8 and Q in a torus enable us to write down for any scalar 
function like B, the magnetic field strength 191 

B(w, 0, g) = x {unm exp[i(nd - m@] 1. 
n , m 

(6) 

Using (4) and (5) we obtain 

(7) 

We assume that B(R, Z, CD) in a cylindrical system is numerically known anywhere 
within the torus. We can integrate along a field time to obtain B&), where x is the 
magnetic coordinate along the field line derived from (2) as 

x = . B dl, 1 

where df is a differential distance along the field line. 
Since a field line must obey w = constant and BO = constant by de~nition 
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throughout this integration, we can choose our initial point to be (w, 0,O) and obtain 
the simplified equation 

W = L lanm exp(iw,,x) I. 
n.m 

n-mr 
w nm =- g+zz. 

(8) 

Since B(J) is in general not a periodic function unless w happens to coincide with a 
rational surface, it is necessary to limit the extent of the integration in x by the use of 
a window function, a concept widely used in combination with fast Fourier 
transforms (FFT) in electronics [ 11, 121. The FFT assumes a periodic function as 
input, therefore the mismatch in Bk) at the ends of integration x = fx* will give rise 
to spurious noise in the Fourier spectrum which can be minimized by the appropriate 
choice of the window function. We shall in this paper use a Gaussian window as it is 
analytic, hence easily understood. This Gaussian should have a width much smaller 
than the range of integration x*, but broader compared to the frequencies of interest 
in Bk). Let A(w) be the Fourier transform of B(J) times a Gaussian of width x*/n: 

A(w) = 1” 
-x* 

Bk) [ (2n):12 x* exp (- $$j J exp(-iwx) dx 

X* 

=i 
Fh) exp(-iwx) dx, 

” -xt 
(9) 

then 

A(w)= 1 unmexp(-~[(w,,-wo)/w,I’). 
n.m 

where w* = n/x* gives the broadening of the spectrum to be expected from a 
Gaussian of width x*/n. By adjusting the parameter n, the width of the Gaussian 
may be tuned to give minimum mismatch at x = kx* consistent with a clear 
separation in the Gaussian maxima of the function A(w). 

The values of a,,,,, and w,,, extracted from the Fourier spectrum. can be used in 
Eq. (8) to produce B(y/, e,,~). 

APPLICATION TO A TORSATRON 

Figure 1 shows the coil configuration of a I= 2 M = 10 torsatron with major 
radius of 1.7 meters and minor radius of 0.4 meters. 

Since the point x = 0 is arbitrary, it is convenient to choose a point of symmetry in 
x as this reference point, for when the input is symmetric, the output Fourier 
spectrum will lie entirely in the real frequency plane. Therefore we start the 
integration at point B(w, 0,O) in one of the symmetry planes of the torus. The value 
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FIG. I. 3-D view of the coil configuration of a I = 2 172 = 10 torsatron. 

of w will not be known until after the integration is completed and many toroidal 
circuits have been traced. We solve the equations for the field line in x, thus ensuring 
that we have B in equal intervals of x: 

dR B --..=-A 
dx B” 

dZ B -=z 
dx B2’ 

d@ B, 
z=s’ (10) 

A fourth-order Runge-Kutta integration scheme or, alternatively. a modified divided 

RIVETERS) 

FIG. 2. The intersections of eight magnetic surfaces with a symmetry plane. 
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difference method of Shampine and Gordon ] 13 ] has been used, and at each step we 
save both the value of B as well as the associated R. Z, @. Figure 2 shows the inter- 
sections of eight field lines with a symmetry plane, each tracing out a separate flux 
surface. To obtain a precise value of I+Y, two methods have been used: (1) Since B, is 
given by the sum of poloidal currents, g, threading the torus, B, = g/R and 

p=&jBmdRdz=&+ 1 dR 1. dz. (11) 

(2) Area integration becomes progressively more complex when the shape of the area 
becomes more irregular. Under these circumstances we convert the area integral to a 
line integral in the vector potential A 

I+Y = 4 A ’ ds. 

The integration path which is mapped by a bi-cubic spline consists of the intersection 
of the flux surface with the symmetry plane. The vector potential in general is 
obtainable from the magnetic field package. 

Our purpose is to obtain the amplitudes of the Fourier peaks and identify their 
mode numbers n and m. A judicious choice of the parameters x*, q. Ax, N. where Ax 
is the step length of integration and N the total number of data points. will aide in 
much savings for both computer time and storage. Naturally Ax should be chosen to 
satisfy certain accuracy criterion on B(J). The total number of points N is in general 
limited by the available computer time and storage. As can be seen from Eq. (7) or 
Fig. 5 the smallest distance between consecutive peaks in the Fourier spectrum is 
approximately z/g if I < 1 and I < g. Therefore in cases where the peak separation is 
large enough, a broad peak width, arising from Gaussian broadening, q/x*, may be 
tolarated. As is generally the case, we have conflicting requirements on n. the 
Gaussian width. On the one hand, q should be small to minimize the Fourier peak 
width, on the other hand, the width of the Gaussian, x*/n, should be kept small in 
order to minimize noise arising for the mismatch at x = kxa, Let us assume that we 
allow Gaussian broadening on the Fourier peaks to be twice the intrinsic resolution 
of the peaks which is given by 242x,, . we have, therefore, w* = njx* = 2(71/x*) and 
q = 271. This then determines q. The maximum frequency in the output of a Fourier 
analyzer is, of course, dependent only on Ax, the minimum distance between input 
data points. However, if we were to keep Ax the same but increase the range of the 
input to -PX* -c x < PX+, where p > 1, a better resolution would be obtained in the 
sense that there would be p times more points per given output interval. A very 
simple way of achieving this without spending more time on the integration of B(J) is 
simply to fill up the input beyond x* with zeros. If n is kept the same then the 
Gaussian broadening, w*, would also be reduced. Of course a certain amount of 
noise is introduced, but this should be small since the Gaussian envelope has already 
reduced the input at px* to e-“’ times the value at x = 0. The smallest frequency 
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FIG. 3. Magnetic field B(J) along a field line, x = 1 B dl. 

difference, do, which we wish to resolve is either l/g or l/g, whichever is the smaller; 
suppose we require that this Aw be a few times, say q times the line width, o*, then 
Aw = VW, = q2/x* andx* = t12/Aw. Taking Aw = l/g and x = g#, it may be seen that 
we need to follow the field line at least q2/r toroidal circuits in order to have distinct 
peak separation. One last choice available to us lies in x* = N Ax. Since we are often 
interested in only the very low frequency end of the Fourier spectrum, it is useful to 
minimize N and correspondingly increase Ax so as to save integration time. However, 
Ax must be kept sufficiently small to accurately follow the field lines. 

Figure 3 shows a plot of Bk) versus x for 213 points in the range -x* < x < 0. The 
other half may be obtained by reflection because of the inherent up down symmetry 
of the coil configuration. This Bk) is then multiplied with a Gaussian with q = 4 to 
provide the input to a fast Fourier transform package. Figure 4 shows a section of the 
Fourier spectrum. Since in most cases the currents are predominently poloidal, that 
is, Z < g, it is convenient to plot umn against (n - mz) rather than w,,, , for peaks with 
m = 0 appear then as integers on the absissa. The separations between peaks with 
common n also give us a good method of estimating the average transform 1. Values 

FIG. 4. Fourier spectrum at one flux surface showing the real coefficients c(,, versus (n - ml) for a 
torsatron. 
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FIG. 5. Fourier spectrum at one flux surface showing the real coefficients u,, versus 01 - mr) for a 
heliac. 

of these coefficients can be obtained by these means to within an order of accuracy of 
~10~~. Appearance of the spectrum depends very much on the toroidal and poloidal 
mode numbers of the configuration as well as the transform and the poloidal and 
toroida~ currents involved in producing the magnetic field. Another example of a 
spectrum can be seen in Fig. 5, where the n = 2, m = 1 configuration of a heliac 
Torsatron gives rise to a fewer number of more separated peaks. 

Figure 6 is a 3-D plot of the amplitude of the Fourier peaks in 12, m space. After 

FIG. 6. 3-D display of Fourier coefficients an”, m n. m space shown m FIN. 4. 
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FIG. 7. Variations of some Fourier coefficients an,,, with toroidal flux w. 

identifying a chosen number of the largest Fourier coefficients at several flux 
surfaces, we now have the complete information for reconstruction, 

B = 1 a(y/jcos 
n,m n.m 

(l-2) 

if we assume that variations of an,,, with w may be obtained by spline or polynomial 
interpolation. Figure 7 shows all the coefficients used with cubic spline fits. Figure 8 
shows the variation of the rotational transform I with v/, again using spline fits. 

In order to check our numerical process, we have compared the guiding center 
motion of a 10 KeV test particle using (1) magnetic field B, derived from current 
filaments by Biot-Savart law and standard drift equations in cylindrical coordinates 
and (2) magnetic field B in magnetic coordinates as described in this paper and the 
corresponding equations of motion Eq. (3). Figure 9a shows the magnetic field B, 
from the Biot-Savart law along the trajectory of the particle, and Fig. 9b shows the 
error in B along the trajectory where e, is defined as 

B, --2 
‘e3= B, +B,’ 
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FIG. 8. Variation of the rotational transform I with toroidal flux v/. 
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FIG. 9. (a) Magnetic field as calculated from the Biot-Savart law along the trajectory of the test 
particle with 10 KeV energy. (b) Percentage differences of magnetic field calculated in the cylindrica1 
and magntic coordinate systems of the test particle along its trajectory. 
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FIG. 10. Projection of the test particle of Fig. 9 onto the w. 0 plane, where 0 IS the polotdal angle. 

the subscripts 1 and 2 denote the two systems. This error can be regarded as a 
relative error of method (2) if one assumes that B, is the exact field. An order of 
magnitude gain in computer time was found for method (2). The errors in u,, and L’~ 
can also be measured in the same way and they give rise to variations similar to that 
shown in Fig. 9(b). 

In Fig. 10 we show the trajectory of the test particle as a projection onto a given 
plane in polar coordinates where the angular coordinate is 8, and the radial coor- 
dinate w - r*. It is easy to discern the deviation of a particle from a flux surface. In 
fact the adoption of the magnetic coordinates has made particle trajectories more 
physical and readily interpretable. 
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